Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024220200350020008
Environmental Health and Toxicology : EHT
2020 Volume.35 No. 2 p.8 ~ p.8
Experimental determination of indoor air concentration of 5-chloro-2-methylisothiazol-3(2H)-one/ 2-methylisothiazol-3(2H)-one (CMIT/MIT) emitted by the use of humidifier disinfectant
Park Seon-Kyung

Seol Hwi-Soo
Park Hee-Jin
Kim Yoon-Seob
Ryu Seung-Hun
Kim Jae-Hoon
Kim Sue-Jin
Lee Jong-Hyeon
Kwon Jung-Hwan
Abstract
A mixture of 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) had been used as an active ingredient in humidifier disinfectants (HDs). Owing to its high reactivity, the atmospheric concentration of CMIT/MIT, following its use in HD, would be lower than expected assuming that it is removed by ventilation only. In order to evaluate the exposure concentration of CMIT/MIT used as an HD, room-scale chamber studies were conducted under plausible use of three different HD doses at air change rates (ACR) of 0.3, 0.5, and 1.0 h?1. Atmospheric CMIT/MIT was sampled using two serial impingers containing deionized water after the attainment of steady state. Water samples in which CMIT/MIT was dissolved were concentrated using a cosolvent evaporation method with efficiencies of 35.5 and 77.9% for CMIT and MIT, respectively. The estimated air concentration, assuming that all the CMIT/MIT is absorbed in deionized water, increased linearly with increasing emission rate, but was independent of the ACR. This indicates that the removal rate of CMIT/MIT via chemical reactions is more than the removal rate by ventilation. Further investigations on homogeneous and heterogeneous chemical reactions of CMIT/MIT under ambient conditions are necessary to understand the actual exposure concentration of the mixture in HD.
KEYWORD
biocides, chemical reactions, chloromethyl/methyl-isothiazolinone (CMIT/MIT), health risk assessment, indoor air
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed